

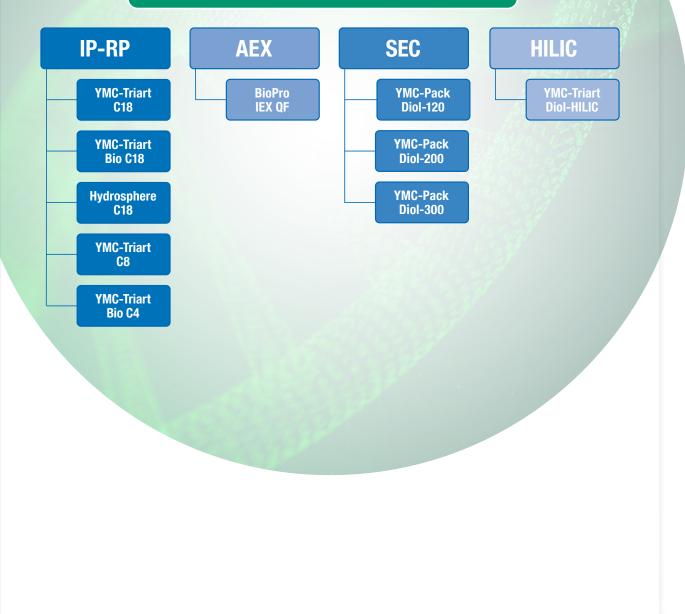
YMC Oligonucleotide Columns

Nucleic acids

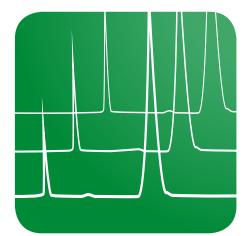
Different types of therapeutic nucleic acids

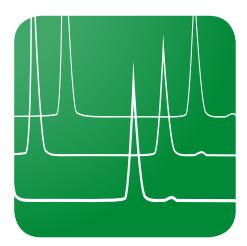
	Antisense oligonucleotide/ miRNA	siRNA	Aptamer	gRNA	mRNA	Plasmid
Example structure	THEFT	- TITITITI	TIME DELET		y www y	
Type(s) of nucleic acids	ssDNA, ssRNA	dsRNA	ss/dsRNA, ss/dsDNA	ss/dsRNA	ssRNA	dsDNA
Length (mer)	11–24	19–23	20–100	100	1,000–7,000	4,000–10,000
Mass range (kDa)	5	15	5–30	30	300–2,000	2,000-7,000
Modifications (phosphates, ribose, nucleobase)	Yes	Yes	Yes	Yes	Nucleobases only (5' cap, 3' Poly(A) tail)	No
Chemical conjugates / carrier systems	Yes/ carrier possible	Yes/ carrier possible	Yes/ carrier possible	No/ carrier possible	No/ Lipid nanoparticles	No/ carrier possible
Mode of action	mRNA degradation	mRNA degradation	Protein function modulation	Genome editing	Protein production	Gene expression

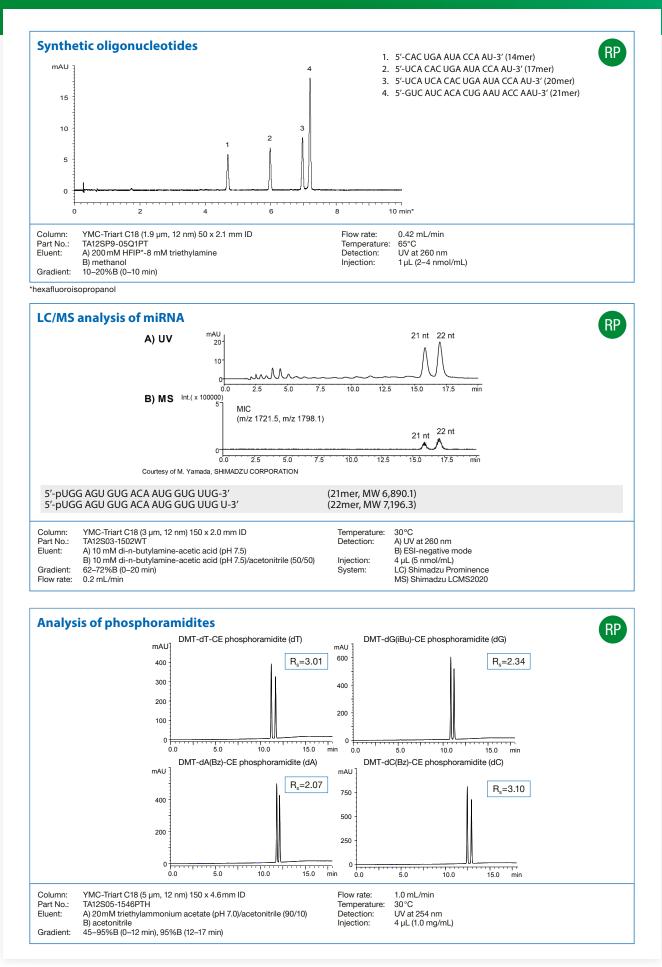
Content

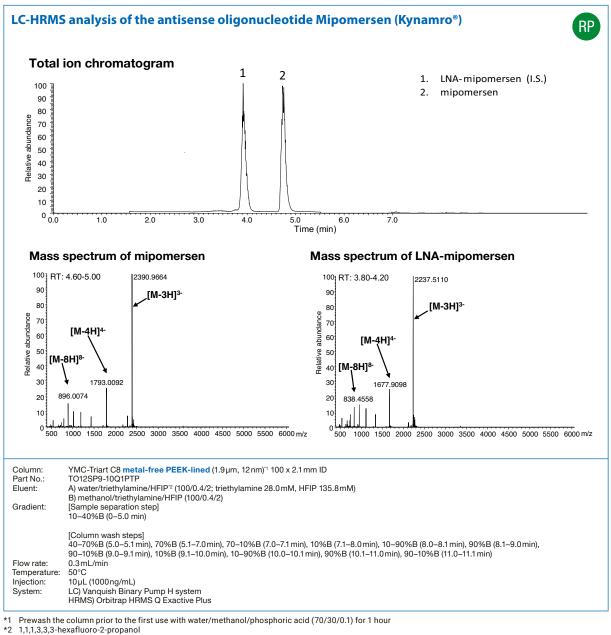

Page

Oligonucleotide Application Notes	6–10
IP-RP Oligonucleotide Columns	
YMC Accura Bioinert Hardware	
AEX Oligonucleotide Columns	
SEC Oligonucleotide Columns	
HILIC Oligonucleotide Columns	
Ordering Information	

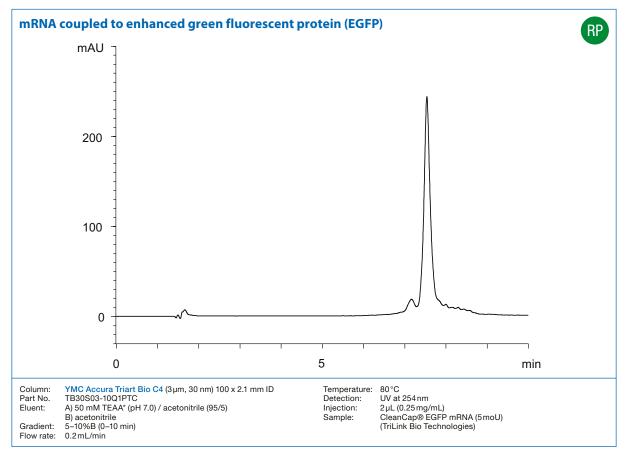

Phase selection guide

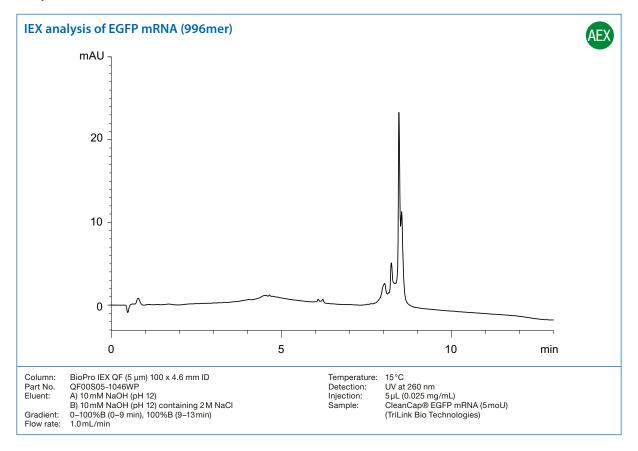

Oligonucleotides / Nucleic Acids

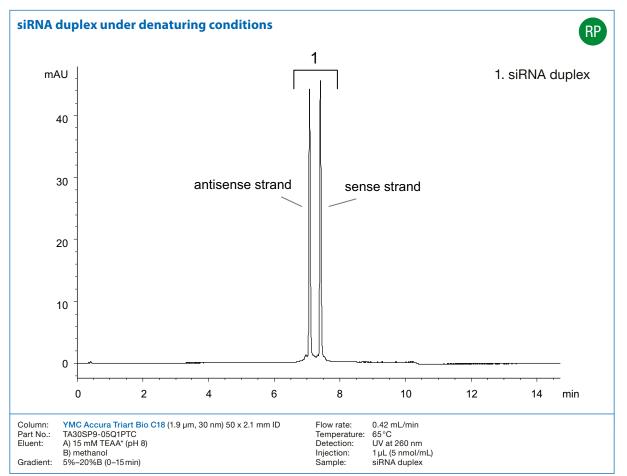




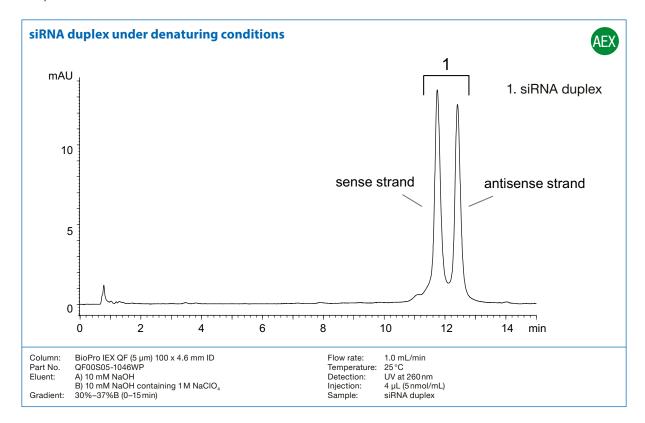
Oligonucleotide Applications

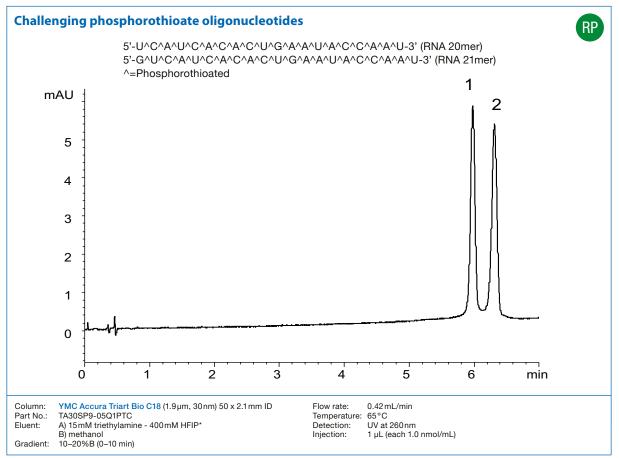


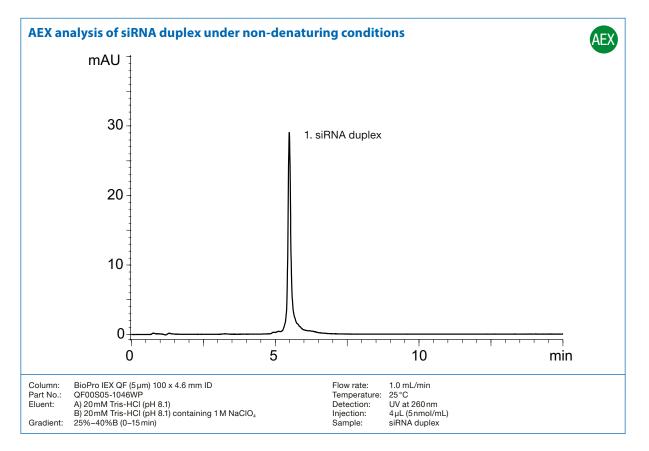




Reference: Y. Sun et al, Development of a bioanalytical method for an antisense therapeutic using high-resolution mass spectrometry, Bioanalysis, 2020 NOV 26, doi: 10.4155/bio-2020-0225.

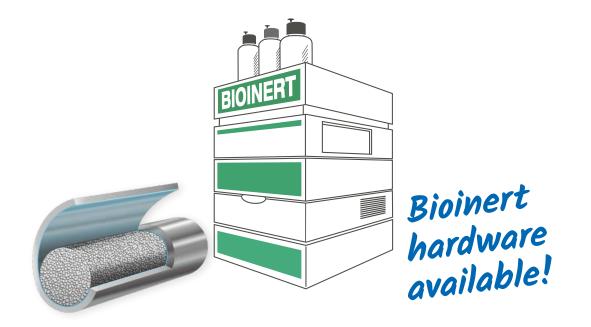



*triethylammonium acetate



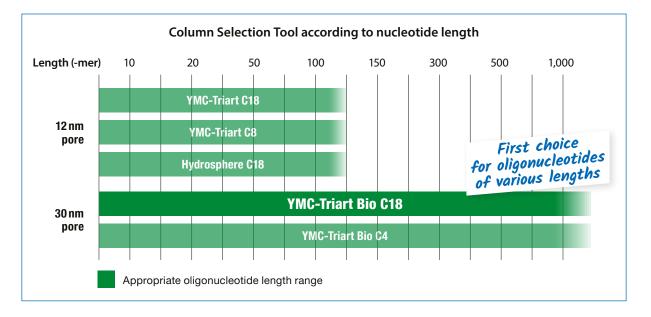
*triethylammonium acetate

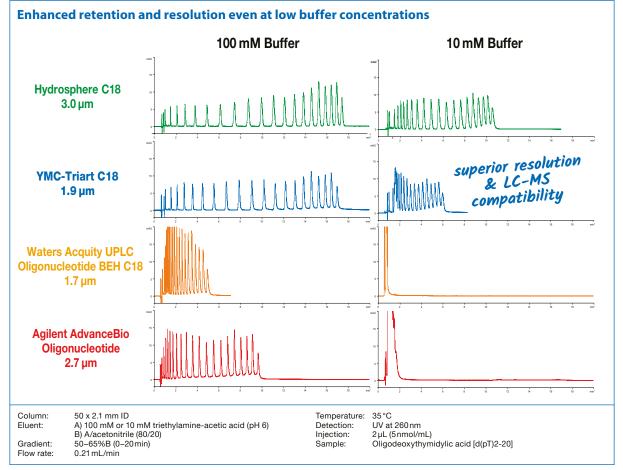
*1,1,1,3,3,3-hexafluoro-2-propanol


IP-RP – UHPLC/HPLC Selectivities

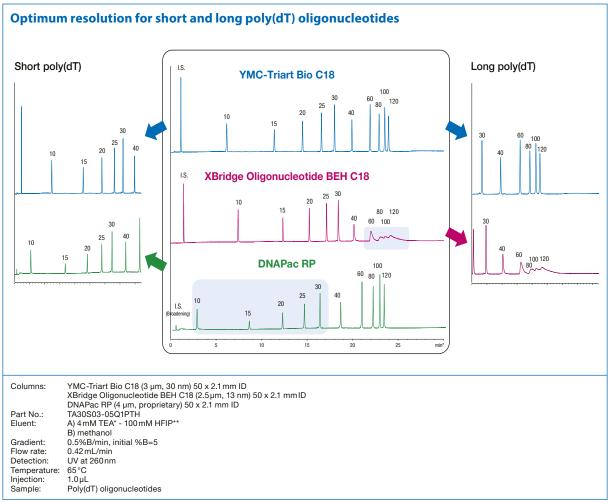
Features

- Selection of C18, C8 and C4 columns
- For ion-pairing (IP-RP) UHPLC and HPLC
- pH- and temperature stable phases
- Superior reproducibility
- Bioinert coated YMC Accura column hardware

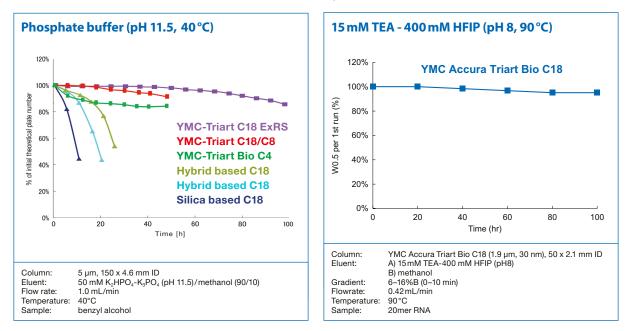

Selectivities for oligonucleotides

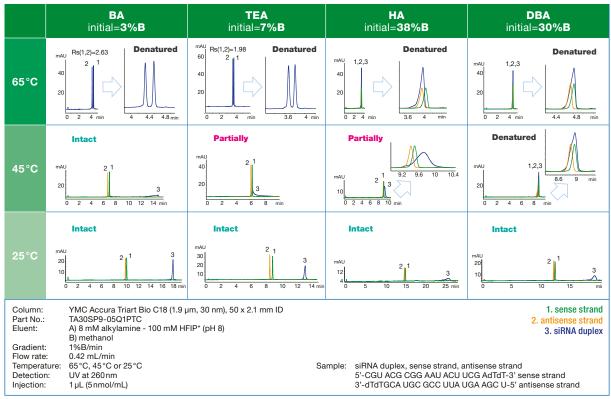

	YMC-Triart C18	YMC-Triart Bio C18	YMC-Triart C8	YMC-Triart Bio C4	Hydrosphere C18
Base particle		silica			
Modification	C18 (USP L1)	C18 (USP L1)	C8 (USP L7)	C4 (USP L26)	C18 (USP L1)
Particle size / µm	1.9, 3, 5	1.9, 3, 5	1.9, 3, 5	1.9, 3, 5	2, 3, 5
Pore size / nm	12	30	12	30	12
pH range	1.0 – 12.0	1.0–12.0	1.0–12.0	1.0–10.0	2.0-8.0
Temperature range	pH < 7: 90°C pH > 7: 50°C	pH < 9: 90 °C pH > 9: 50 °C	pH < 7: 90 °C pH > 7: 50 °C	pH < 7: 90 °C pH > 7: 50 °C	50°C
Column hardware		stainless-steel			

Bioinert YMC Accura Triart columns are available for improved sensitivity and peak shape of coordinating compounds such as nucleotides or oligonucleotides.


IP-RP – UHPLC/HPLC Selectivities

The separation of oligo (deoxythymidylic acids), d(pT)2-20, was compared using 100 mM or 10 mM triethylammonium acetate (TEAA) buffer, under the same gradient conditions. Both Hydrosphere C18 and YMC-Triart C18 showed enhanced retention and resolution compared to other commercially available C18 phases designed for oligonucleotide analysis, even at the low ion-pairing buffer concentration such as 10 mM. The higher concentration provides stronger retention and superior resolution of oligonucleotides, although a lower concentration has the advantages of increasing the signal intensity and reducing system contamination in HPLC-MS analysis.

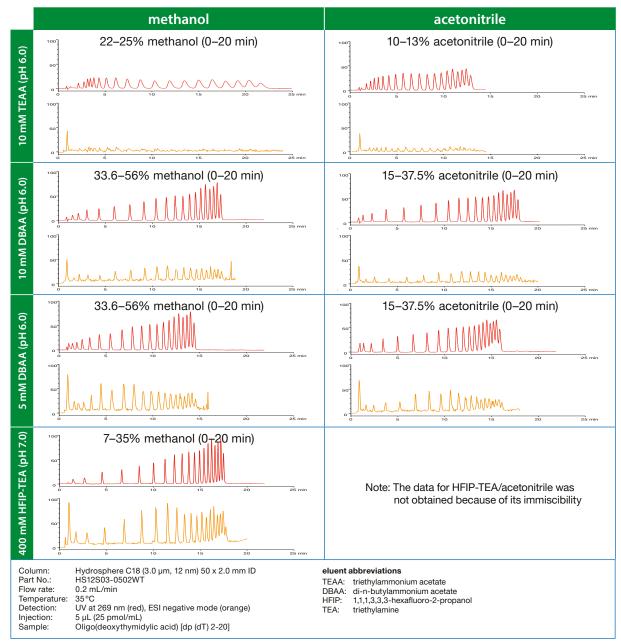

IP-RP – UHPLC/HPLC Selectivities


*trietylamine, **1,1,1,3,3,3-hexafluoro-2-propanol

The YMC-Triart Bio C18 column demonstrates a better resolution, higher recovery and reproducibility of poly(dT) oligonucleotides compared to the other two competitor columns. Longer poly(dT) oligonucleotides (60–120mer) were separated poorly by the competitor's hybrid silica based column, whereas YMC-Triart showed high resolution for oligonucleotides of all sizes. Peak areas and therefore recoveries of shorter poly(dT) oligonucleotides (10–40mer) were much smaller when separated using the dedicated DNA competitor column. In addition, YMC-Triart Bio C18 showed reproducible behaviour such as consistent peak areas. This makes YMC-Triart Bio C18 an ideal tool for analysis of poly(dT) oligonucleotides.

Versatile wide pH and temperature stability

Effect of four different ion pair reagents on the denaturation of a siRNA duplex at different temperatures



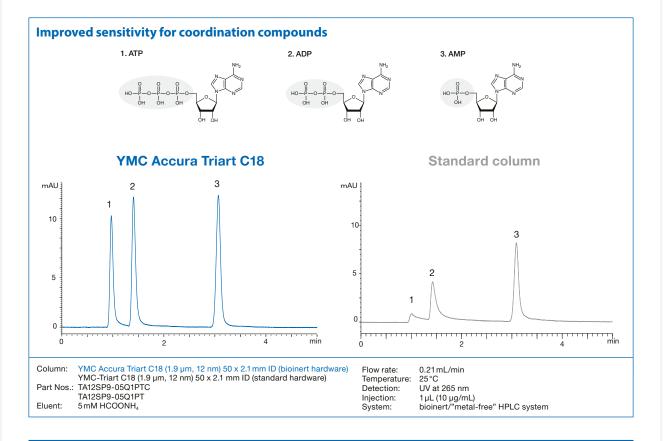
*1,1,1,3,3,3-hexafluoro-2-propanol

IP-RP - Expert Tips: Ion-pairing salts

Effect of composition and salt concentration of ion-pairing mobile phase on the separation and signal intensity

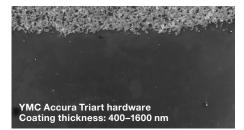
The mobile phase composition has different effects on the separation and signal intensity in electrospray ionisation mass spectrometry (ESI-MS) of oligonucleotides. Using different gradient conditions, acceptable retention and resolution can be achieved (upper UV chromatograms; red trace) for each separation by optimising the gradient slope of the organic solvent regardless of the type of mobile phase. The ESI-MS intensity is significantly influenced by

the type and concentration of ion-pairing buffer as shown in the lower MS chromatograms (orange trace). HFIP-TEA buffer/methanol systems provide the maximum MS intensity. Enhanced retention and MS intensity are obtained using 10 mM DBAA buffer compared to 10 mM TEAA buffer, and the lower DBAA concentration results in approximately 1.5–3 times increase in the intensity without any change in the concentration of organic solvent.


Bioinert columns for bioseparations and coordinating compounds

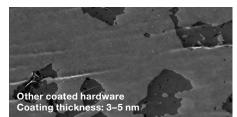
- Exceptional peak shapes with high sensitivities
- Excellent recoveries without column preconditioning
- Superior reproducibility and no carry-over effects
- Ideal for highly sensitive LC/MS analyses

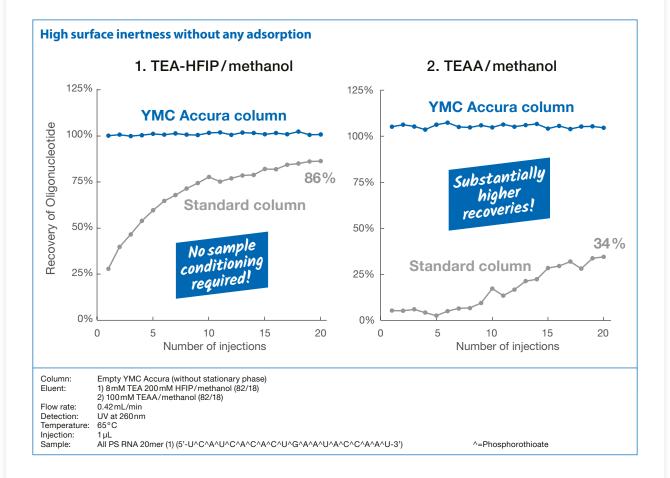
Specifications


	YMC Accura Triart	YMC Accura BioPro IEX			
Modifications	C18, Bio C18, C8, Bio C4, Diol-HILIC	QF			
Particle Size	1.9, 3 and 5 µm	3 and 5 µm			
Column hardware	stainless-steel with bioinert coating				
Frit hardware	stainless-steel wit	h bioinert coating			
Pressure limit	1.9 μm: 100 MPa (15,000 psi) 3/5 μm: 45 MPa (6,525 psi)	3 μm: 15–20 MPa (2,175-2,900 psi) 5 μm: 10–30 MPa (1,450-4,350 psi)			

Metal coordinating compounds, which have a phosphate group in their structure, tend to show poor peak shape due to interactions with metals, such as the stainless-steel in column bodies and frits. By using a bioinert column hardware, better peak shapes can be expected.

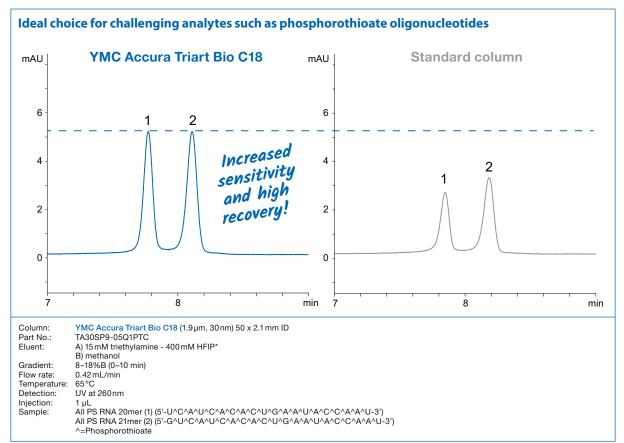
Nucleotides with phosphate groups also show better peak shapes when compared to the regular column hardware. The bioinert coated YMC Accura column hardware is ideal for highly sensitive analyses using LC/MS.

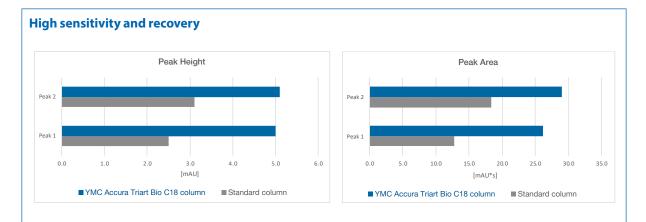

YMC Accura: durable bioinert coating



The robust bioinert coating used on YMC Accura hardware is 130 to 320-fold thicker, making it more durable than other similar hardware concepts. A long-term inertness against sensitive substances is ensured. In order to demonstrate its robustness, a YMC Accura column was packed multiple times. Even though this process is hard on the column surface, the coating remains unaffected (SEM* picture: top area is bare steel for comparison).

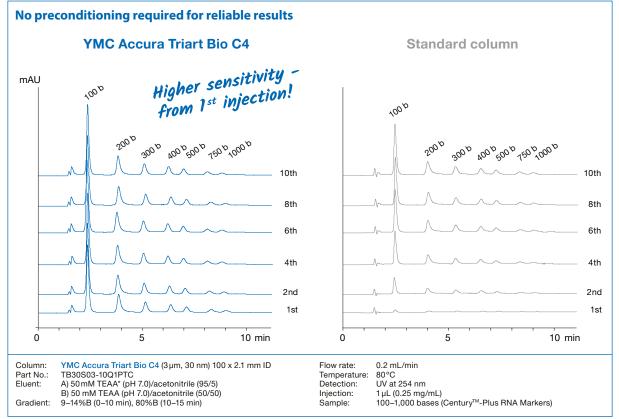
*Scanning Electron Microscope

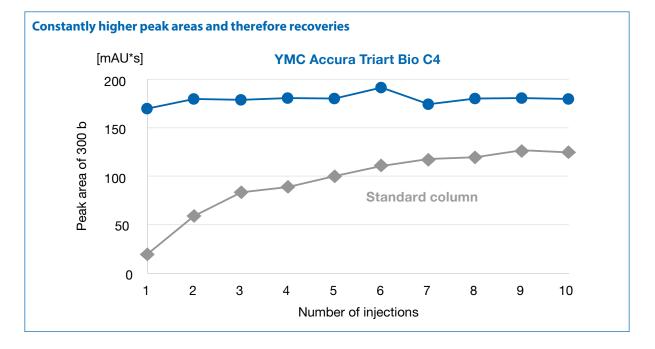

Other coated columns can lose their inertness over time. This will again lead to adsorption of sensitive compounds on the uncovered metallic surfaces. Peak tailing, loss of recovery and sample carry-over are typical results of the delamination of the coating. On a competitor's column, most of the coating was already delaminated after merely unpacking the column. (The dark spots in this picture are the remaining coating.)


The YMC Accura hardware with its inert surface area prevents adsorption of oligonucleotides using a range of different buffers. No sample conditioning is required.

YMC Accura columns further provide significantly higher recoveries and sensitivities that cannot be achieved with regular stainless-steel columns – even after conditioning with 20 sample injections. These ready-to-use columns ensure high recovery and reproducibility from the very first use.

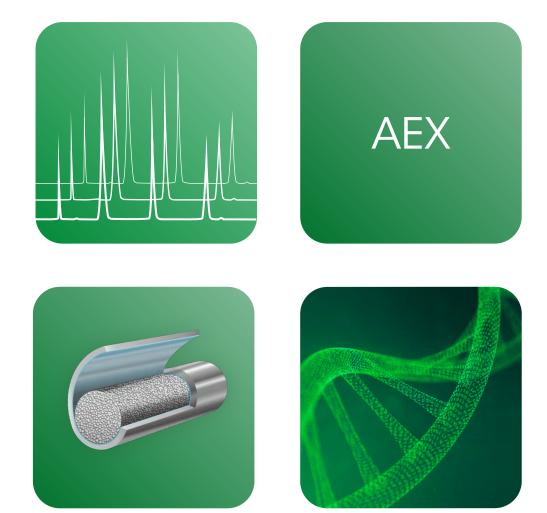
Significantly higher sensitivity and recovery


*1,1,1,3,3,3-hexafluoro-2-propanol


Doubled peak height and area!

The YMC Accura Triart Bio C18 column provides double peak heights and peak areas for the oligonucleotides compared to those for regular stainless-steel columns. YMC Accura Triart columns enhance the analytical sensitivity significantly, thereby avoiding the loss of high-value samples.

Reliable results from the first injection



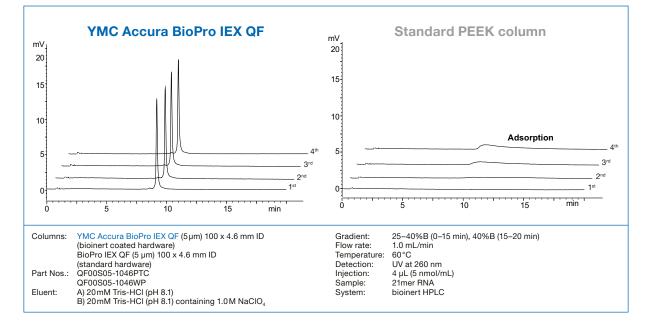
* Triethylammonium acetate

The YMC Accura Triart Bio C4 column shows stable peak areas from the first injection, while the standard stainless-steel column provides only 10% of the peak area (for the 300 base marker) with the first injection. Even after the tenth injection, the peak areas of the stainless-steel column are considerably less than those of the YMC Accura Triart column.

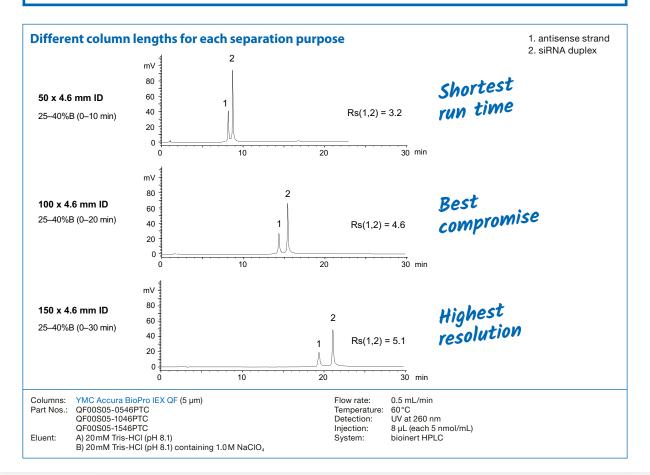
AEX

AEX – HPLC Selectivities

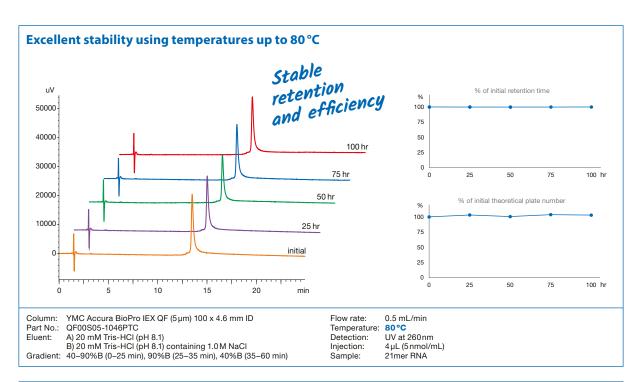
Features

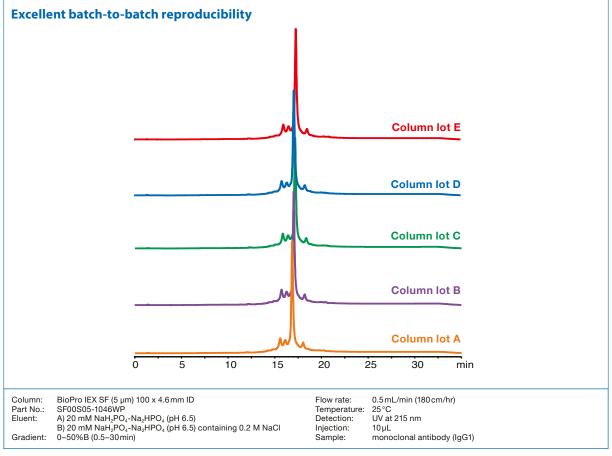

- Non-porous hydrophilic polymers
- High recovery and high resolution
- Low nonspecific adsorption
- Excellent reproducibility
- Bioinert coated YMC Accura column hardware

	BioPro IEX QF
Matrix	hydrophilic polymer (polymethacrylate)
Particle size / µm	3, 5
Pore size / nm	non-porous
Charged group	$-CH_2N^+(CH_3)_3$
Counter ion	Cl
Available pH range	2.0–12.0
Temperature range	4–80°C
Pressure limit	3 μm: 15–20 MPa (2,175–2,900 psi) 5 μm: 10–30 MPa (1,450–4,350 psi)
Column hardware	bioinert coated YMC Accura

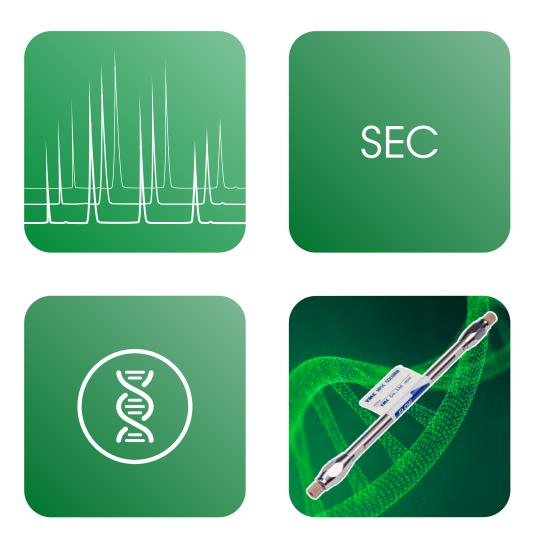

MC's anion exchanger (AEX) columns of the BioPro IEX series are available with strong exchanger modification, based on 3 or 5 µm non-porous (QF columns) hydrophilic polymer beads. The non-porous particles offer high efficiency, very high resolution and low operating pressures.

AEX – Loadability



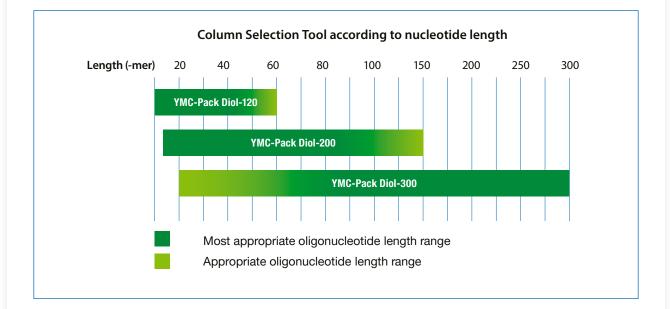

Sharp peaks and reliable recovery with different column dimensions

Oligonucleotides generally exhibit poor peak shape and therefore low recovery in AEX analysis, mainly due to adsorption onto the column hardware. YMC Accura BioPro IEX columns provide high recovery and very good peak shapes from the first injection. This makes YMC Accura BioPro IEX QF columns ideal for the analysis of oligonucleotides with reproducible results. The columns show stable peak areas from the 1st injection, so that no preconditioning is required.



AEX – Stability and Reproducibility

BioPro IEX columns exhibit excellent batch-to-batch reproducibility. All gel batches are inspected by rigorous quality control tests, and must meet the required criteria before release. BioPro IEX columns are the best choice for the quality control of biopharmaceuticals such as oligonucleotides or mAbs as in this example.

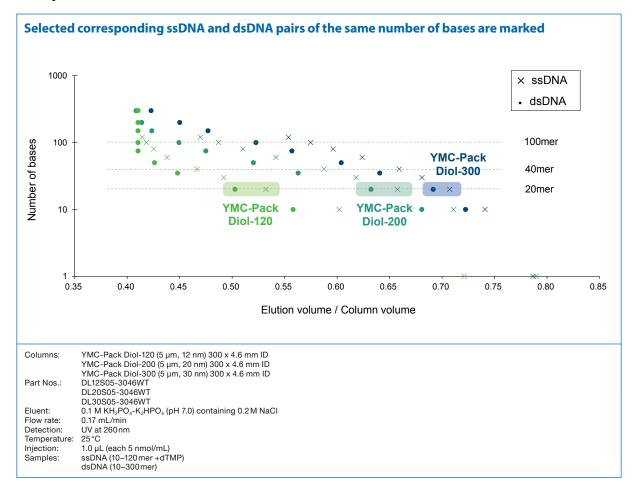

SEC

SEC – UHPLC / HPLC Selectivities

Features

- Excellent reproducibility with minimal secondary interactions
- 2 µm for UHPLC
- Cost-effective

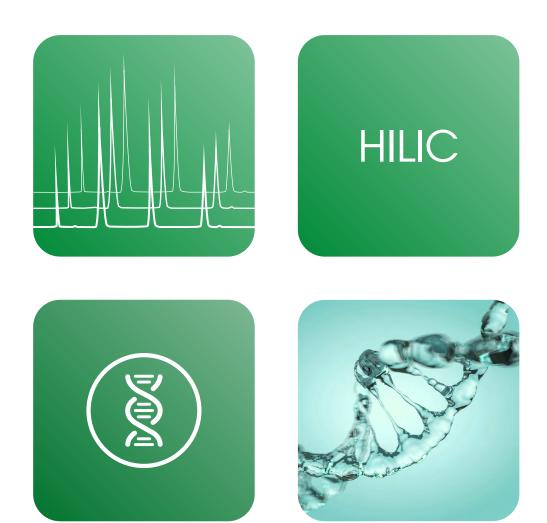
	YMC-Pack YMC-Pack YMC-Pack Diol-120 Diol-200 Diol-300					
	For short oligonucleotides	For intermediate oligonucleotides	For longer oligonucleotides			
Base particle	silica					
Particle size / µm	3, 5	2, 3, 5	2, 3, 5			
Pore size / nm	12	20	30			
Modification		dihydroxypropyl				
Temperature range	40°C					
Pressure limit	2 μm: 45 MPa (6,525 psi); 3/5 μm: 20 MPa (3,000 psi)					



SEC analysis using YMC-Pack Diol columns with different pore sizes

YMC-Pack Diol-120 is best suited for shorter oligonucleotides (10–40mer), whereas YMC-Pack Diol-200 shows the best resolution for oligonucleotides of medium size (30–80mer). Longer oligonucleotides of 60–120mer in length are separated most effectively by YMC-Pack Diol-300.

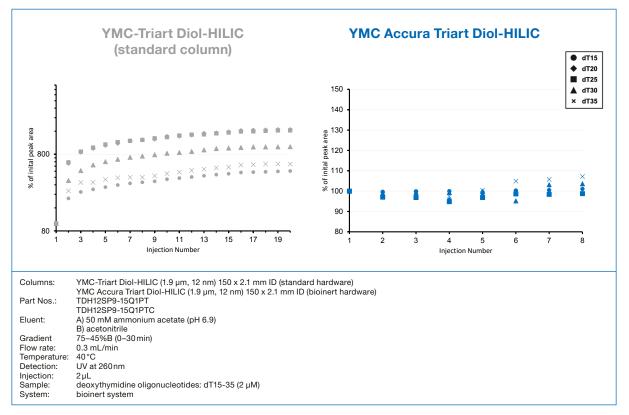
Similar results are obtained when analysing dsDNA. Small oligonucleotides are separated with higher resolution when smaller pore sizes of 12 and 20 nm are used. Above a length of 50mer, oligonucleotides are unable to penetrate the small pores and elute at the same time. YMC-Pack Diol-200 can resolve oligonucleotides up to a size of 100mer. dsDNA of 150–300mer are only separated by YMC-Pack Diol-300 with the largest pore size of 30 nm. This column also shows the best resolution over a wide range of oligonucleotide lengths.


SEC – Elution volumes

Comparison of the elution volume of ssDNA and dsDNA

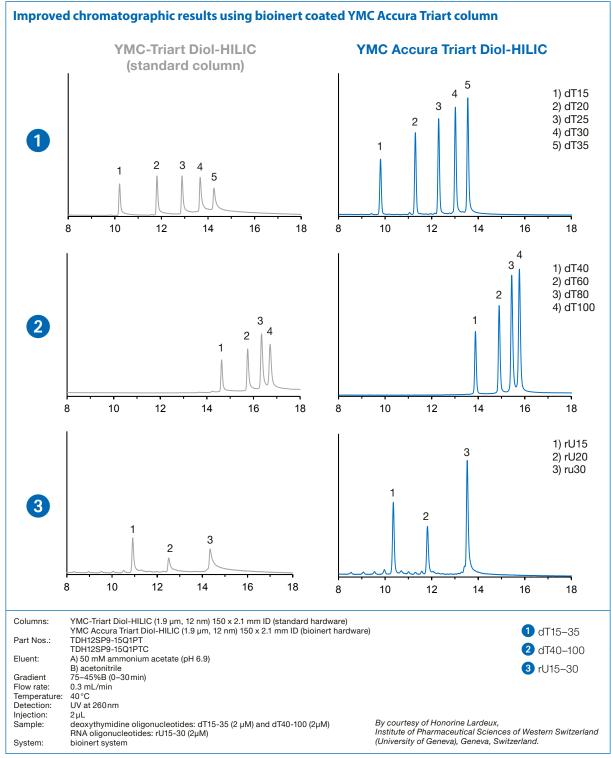
Although dsDNA has the same length as its single-stranded counterpart, the dsDNA elutes at lower elution volumes when separated by SEC. This behaviour is most probably due to the larger hydrodynamic radius of dsDNA compared to ssDNA, which results in faster diffusion through the stationary phase.

HILIC


HILIC – UHPLC/HPLC selectivity

Features

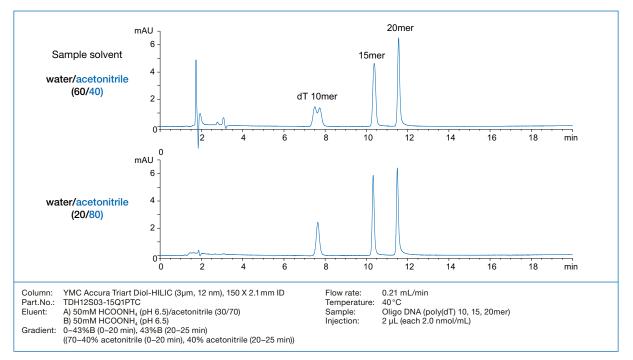
- pH- and temperature stable
- Superior reproducibility
- Bioinert coated YMC Accura column hardware


	Base particle	Modification	Particle Size/ µm		pH range		Column hardware
YMC-Triart Diol-HILIC	organic/inorganic hybrid silica	Diol (USP L20)	1.9, 3, 5	12	2–10	50°C	bioinert coated YMC Accura

Pre-conditioning of a stainless-steel and a bioinert coated column with short DNA mixture

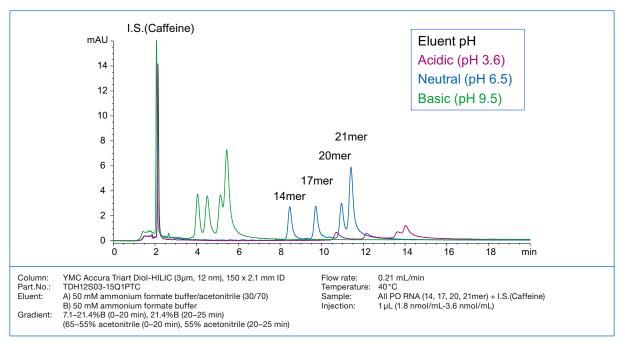
Pre-conditioning is a typical procedure when working with stainless-steel columns. Using a bioinert column such as YMC Accura Triart usually achieves great performance from the first injection when working with an IP-RP phase. HILIC phases still need some pre-conditioning when a bioinert column is used; however, the number of injections is remarkably reduced. While 20 injections are necessary for the stainless-steel column, the YMC Accura column is already conditioned after 8 injections, with very little difference (less than 10%) between initial and final peak areas.

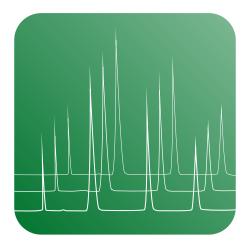
HILIC



Reference: H. Lardeux, A. Goyon, K. Zhang, J.M. Nguyen, M.A. Lauber, D. Guillarme, V. D'Atri, The impact of low adsorption surfaces for the analysis of DNA and RNA oligonucleotides, J. Chromatogr. A 1677 (2022) 463324.

After conditioning and analysing the short DNA oligonucleotide mixture of dT15-35, longer DNA oligonucleotides dT40-100 and short RNA oligonucleotides rU15-30 are analysed. Higher sensitivities, peak areas and less tailing are achieved using the bioinert YMC Accura Triart Diol-HILIC column. Non-specific adsorption does not vary according to length, even though the adsorption is usually higher for longer oligonucleotides in IP-RP.


HILIC Expert Tips


The influence of the sample solvent on the peak shape is significant. The organic composition of the sample solvent must be equal to or higher than the initial gradient composition. A higher water content in the sample solvent leads to massive peak deformation.

Influence of mobile phase pH

The pH of the mobile phase has a massive effect on the recovery and retention of oligonucleotides. Acidic pH results in higher retention, but at the cost of drastically reduced recovery. A neutral-to-basic pH is recommended for the mobile phase. When using a basic pH, a shorter retention time is observed, but also the highest recovery.

Ordering information

Ordering information

IP-RP – Ordering information

1.9 µm bioinert coated UHPLC columns (max. pressure 100 MPa)

Phase	Column ID [mm]		Column length [mm]					
		50	100	150				
YMC Accura Triart C18	2.1	TA12SP9-05Q1PTC	TA12SP9-100Q1PTC	TA12SP9-15Q1PTC				
YMC Accura Triart Bio C18	2.1	TA30SP9-05Q1PTC	TA30SP9-10Q1PTC	TA30SP9-15Q1PTC				
YMC Accura Triart C8	2.1	T012SP9-05Q1PTC	T012SP9-10Q1PTC	T012SP9-15Q1PTC				
YMC Accura Triart Bio C4	2.1	TB30SP9-05Q1PTC	TB30SP9-10Q1PTC	TB30SP9-15Q1PTC				

3 µm bioinert coated HPLC columns (max. pressure 45 MPa)

Phase	Column ID [mm]	Column length [mm]				
		50	100	150		
YMC Accura Triart	2.1	TA12S03-05Q1PTC	TA12S03-10Q1PTC	TA12S03-15Q1PTC		
C18	4.6	TA12S03-0546PTC	TA12S03-1046PTC	TA12S03-1546PTC		
YMC Accura Triart	2.1	TA30S03-05Q1PTC	TA30S03-10Q1PTC	TA30S03-15Q1PTC		
Bio C18	4.6	TA30S03-0546PTC	TA30S03-1046PTC	TA30S03-1546PTC		
YMC Accura Triart	2.1	T012S03-05Q1PTC	T012S03-10Q1PTC	T012S03-15Q1PTC		
C8	4.6	T012S03-0546PTC	T012S03-1046PTC	T012S03-1546PTC		
YMC Accura Triart	2.1	TB30S03-05Q1PTC	TB30S03-10Q1PTC	TB30S03-15Q1PTC		
Bio C4	4.6	TB30S03-0546PTC	TB30S03-1046PTC	TB30S03-1546PTC		

3 µm HPLC columns (max. pressure 25 MPa)

Phase	Column ID [mm]		Guard cartridges* with 10 mm length					
		30/33	50	75	100	150	250	(pack of 5)
Hydrosphere C18		HS12S03-03Q1WT HS12S03-0303WT HS12S03-0346WT		HS12S03-L503WT	HS12S03-10Q1WT HS12S03-1003WT HS12S03-1046WT	HS12S03-15Q1WT HS12S03-1503WT HS12S03-1546WT	HS12S03-2503WT	HS12S03-01Q1GC HS12S03-0103GC HS12S03-0104GC

*Guard cartridge holder required, part no. XPGCH-Q1 (for EMEA)/XPGCHP1 (outside EMEA)

IP-RP – Ordering information

Phase	Column ID [mm]	Column length [mm]				
		50	100	150		
YMC Accura Triart C18	2.1 4.6 10	TA12S05-05Q1PTC TA12S05-0546PTC -	TA12S05-10Q1PTC TA12S05-1046PTC TA12S05-1010PTC	TA12S05-15Q1PTC TA12S05-1546PTC TA12S05-1510PTC		
YMC Accura Triart Bio C18	2.1 4.6 10	TA30S05-05Q1PTC TA30S05-0546PTC –	TA30S05-10Q1PTC TA30S05-1046PTC TA30S05-1010PTC	TA30S05-15Q1PTC TA30S05-1546PTC TA30S05-1510PTC		
YMC Accura Triart C8	2.1 4.6 10	T012S05-05Q1PTC T012S05-0546PTC -	T012S05-10Q1PTC T012S05-1046PTC T012S05-1010PTC	T012S05-15Q1PTC T012S05-1546PTC T012S05-1510PTC		
YMC Accura Triart Bio C4	2.1 4.6 10	TB30S05-05Q1PTC TB30S05-0546PTC -	TB30S05-10Q1PTC TB30S05-1046PTC TB30S05-1010PTC	TB30S05-15Q1PTC TB30S05-1546PTC TB30S05-1510PTC		

5 µm bioinert coated HPLC columns (max. pressure 45 MPa)

5 µm HPLC columns (max. pressure 20-25 MPa)

Phase	Column ID [mm]		Guard cartridges* with 10 mm length					
		30/33	50	75	100	150	250	(pack of 5)
Hydrosphere C18	2.1 3.0 4.6	HS12S05-03Q1WT HS12S05-0303WT HS12S05-0346WT	HS12S05-05Q1WT HS12S05-0503WT HS12S05-0546WT	HS12S05-L5Q1WT HS12S05-L503WT HS12S05-L546WT	HS12S05-10Q1WT HS12S05-1003WT HS12S05-1046WT	HS12S05-15Q1WT HS12S05-1503WT HS12S05-1546WT	HS12S05-25Q1WT HS12S05-2503WT HS12S05-2546WT	HS12S05-01Q1GC HS12S05-0103GC HS12S05-0104GC

*Guard cartridge holder required, part no. XPGCH-Q1 (for EMEA)/XPGCHP1 (outside EMEA)

5 µm YMC-Actus high-throughput (semi)preparative columns (max. pressure 20–30 MPa)

Phase	Column ID [mm]			Column length [mm]			Guard cartridges* with 10 mm length
		50	75	100	150	250	(pack of 2)
YMC-Triart C18	20 30 50	TA12S05-0520WX TA12S05-0530WX TA12S05-0553DX	TA12S05-L520WX TA12S05-L530WX -	TA12S05-1020WX TA12S05-1030WX TA12S05-1053DX	TA12S05-1520WX TA12S05-1530WX TA12S05-1553DX	TA12S05-2520WX TA12S05-2530WX TA12S05-2553DX	TA12S05-0120CCN TA12S05-0130CCN TA12S05-0553DXG**
YMC-Triart Bio C18	20 30 50	TA30S05-0520WX TA30S05-0530WX TA30S05-0553DX	TA30S05-L520WX TA30S05-L530WX -	TA30S05-1020WX TA30S05-1030WX TA30S05-1053DX	TA30S05-1520WX TA30S05-1530WX TA30S05-1553DX	TA30S05-2520WX TA30S05-2530WX TA30S05-2553DX	TA30S05-0120CCN TA30S05-0130CCN TA30S05-0553DXG**
YMC-Triart C8	20 30 50	T012S05-0520WX T012S05-0530WX T012S05-0553DX	T012S05-L520WX T012S05-L530WX -	T012S05-1020WX T012S05-1030WX T012S05-1053DX	T012S05-1520WX T012S05-1530WX T012S05-1553DX	T012S05-2520WX T012S05-2530WX T012S05-2553DX	T012S05-0120CCN T012S05-0130CCN T012S05-0553DXG**
YMC-Triart Bio C4	20 30 50	TB30S05-0520WX TB30S05-0530WX TB30S05-0553DX	TB30S05-L520WX TB30S05-L530WX -	TB30S05-1020WX TB30S05-1030WX TB30S05-1053DX	TB30S05-1520WX TB30S05-1530WX TB30S05-1553DX	TB30S05-2520WX TB30S05-2530WX TB30S05-2553DX	TB30S05-0120CCN TB30S05-0130CCN TB30S05-0553DXG**
Hydrosphere C18	20 30	HS12S05-0520WX HS12S05-0530WX	HS12S05-L520WX HS12S05-L530WX	HS12S05-1020WX HS12S05-1030WX	HS12S05-1520WX HS12S05-1530WX	HS12S05-2520WX HS12S05-2530WX	HS12S05-0120CCN HS12S05-0130CCN

*Guard cartridge holder required, part no. XPGHF2P20ID (20 mm ID) XPGHF2P30ID (30 mm ID) no holder required for 50 mm

Further dimensions and guard cartridges available in regular stainless-steel hardware.

AEX – Ordering information

3 µm bioinert coated HPLC columns (max. pressure 15–20 MPa)

Phase	Column ID [mm]		Column length [mm]	
		50 (15 MPa)	100 (15 MPa)	150 (20 MPa)
YMC Accura BioPro IEX QF	2.1 4.6	QF00S03-05Q1PTC QF00S03-0546PTC	QF00S03-10Q1PTC QF00S03-1046PTC	QF00S03-15Q1PTC QF00S03-1546PTC

5 µm bioinert coated HPLC columns (max. pressure 10-30 MPa)

Phase	Column ID [mm]			ı length m]	
		50 (10MPa)	100 (12 MPa)	150 (18 MPa)	250 (30 MPa)
YMC Accura BioPro IEX QF	2.1 4.6	QF00S05-05Q1PTC QF00S05-0546PTC	QF00S05-10Q1PTC QF00S05-1046PTC	QF00S05-15Q1PTC QF00S05-1546PTC	_ QF00S05-2546PTC

6 μm semiprep. columns, stainless-steel hardware (max. pressure 3–9 MPa)

Phase	Column ID [mm]	Column length [mm]
		100
BioPro IEX QF	10 20 30	QF00S06-1010WT QF00S06-1020WT QF00S06-1030WT

SEC – Ordering information

2 µm UHPLC columns (max. pressure 45 MPa)

Phase	Column ID [mm]	Column lei	ngth [mm]	Guard cartridges* with 10 mm length
		150	300	(pack of 5)
YMC-Pack Diol-200	4.6	DL20\$02-1546PTH	DL20\$02-3046PTH	DL20S02-0104GC
YMC-Pack Diol-300	4.6	DL30S02-1546PTH	DL30S02-3046PTH	DL30S02-0104GC

*Guard cartridge holder required, part no. XPGCH-Q1 (for EMEA)/XPGCHP1 (outside EMEA)

3 µm HPLC columns (max. pressure 14-20 MPa)

Phase	Column ID [mm]		Column length [mm]		Guard cartridges* with 10/30 mm length
		150	250	300	(pack of 5)
YMC-Pack Diol-120	4.6 6.0 8.0	DL12S03-1546WT - DL12S03-1508WT	DL12S03-2546WT _ _	DL12S03-3046WT DL12S03-3006WT DL12S03-3008WT	DL12S03-0104GC - DL12S03-0308WTG**
YMC-Pack Diol-200	4.6 6.0 8.0	DL20S03-1546WT - DL20S03-1508WT	DL20S03-2546WT _ _	DL20S03-3046WT DL20S03-3006WT DL20S03-3008WT	DL20S03-0104GC - DL20S03-0308WTG**
YMC-Pack Diol-300	4.6 6.0 8.0	DL30S03-1546WT - DL30S03-1508WT	DL30S03-2546WT _ _	DL30S03-3046WT DL30S03-3006WT DL30S03-3008WT	DL30S03-0104GC - DL30S03-0308WTG**

*Guard cartridge holder required, part no. XPGCH-Q1 (for EMEA)/XPGCHP1 (outside EMEA)

**no holder required for 30 x 8 mm ID guard columns (1 piece) recommended column coupler part no. XRCP1602

5 μm HPLC columns (max. pressure 20 MPa)

Phase	Column ID [mm]		Column length [mm]		Guard cartridges* with 10/30 mm length
		250	300	500	(pack of 5)
YMC-Pack Diol-120	4.6 6.0 8.0 10.0	DL12S05-2546WT DL12S05-2506WT – DL12S05-2510WT	DL12S05-3046WT DL12S05-3006WT DL12S05-3008WT DL12S05-3010WT	– DL12S05-5006WT DL12S05-5008WT DL12S05-5010WT	DL12S05-0104GC - DL12S05-0308WTG** DL12S05-0310WTG**
YMC-Pack Diol-200	4.6 6.0 8.0 10.0	DL20S05-2546WT DL20S05-2506WT - DL20S05-2510WT	DL20S05-3046WT DL20S05-3006WT DL20S05-3008WT DL20S05-3010WT	– DL20S05-5006WT DL20S05-5008WT DL20S05-5010WT	DL20S05-0104GC - DL20S05-0308WTG** DL20S05-0310WTG**
YMC-Pack Diol-300	4.6 6.0 8.0 10.0	DL30S05-2546WT DL30S05-2506WT - DL30S05-2510WT	DL30S05-3046WT DL30S05-3006WT DL30S05-3008WT DL30S05-3010WT	– DL30S05-5006WT DL30S05-5008WT DL30S05-5010WT	DL30S05-0104GC DL30S05-0308WTG** DL30S05-0310WTG**

*Guard cartridge holder required, part no. XPGCH-Q1 (for EMEA)/XPGCHP1 (outside EMEA) **no holder required for 30 x 8 mm ID guard columns (1 piece) recommended column coupler part no. XRCP1602 (for 8 mm ID) and XRCP1605 (for 10 mm ID)

Bioinert SEC columns are available on request.

HILIC – Ordering Information

1.9 µm bioinert coated UHPLC columns

Phase	Column ID [mm]		Column length [mm]	
		50	100	150
YMC Accura Triart Diol-HILIC	2.1	TDH12SP9-05Q1PTC	TDH12SP9-10Q1PTC	TDH12SP9-15Q1PTC

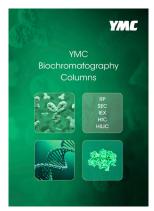
3 µm bioinert coated HPLC columns

Phase	Column ID [mm]		Column length [mm]	
		50	100	150
YMC Accura Triart Diol-HILIC	2.1 4.6	TDH12S03-05Q1PTC TDH12S03-0546PTC	TDH12S03-10Q1PTC TDH12S03-1046PTC	TDH12S03-15Q1PTC TDH12S03-1546PTC

5 µm bioinert coated HPLC columns

Phase	Column ID [mm]		Column length [mm]	
		50	100	150
YMC Accura Triart Diol-HILIC	2.1 4.6	TDH12S05-05Q1PTC TDH12S05-0546PTC	TDH12S05-10Q1PTC TDH12S05-1046PTC	TDH12S05-15Q1PTC TDH12S05-1546PTC

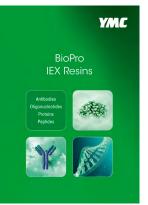
Further dimensions and guard cartridges available in regular stainless-steel hardware.

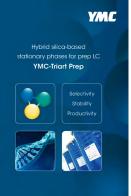

The following brands, trademarks, or service marks are the property of the listed company and/or its subsidiaries. Every effort has been taken to ensure this list is accurate at the time of printing this brochure.

ACQUITY, BEH, XBridge are trademarks of Waters Corp. AdvanceBio is a trademark of Agilent Technologies Inc. DNAPac is a trademark of Thermo Fisher Scientific Inc.

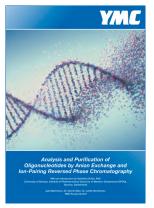
Every effort has been taken to ensure this list is accurate at the time of creating this brochure.

Download the following documents


BROCHURES


YMC Biochromatography Columns

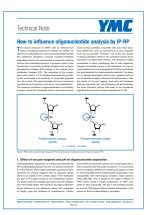
YMC-Triart



YMC **BioPro IEX Resins**

YMC-Triart Prep

Analysis and Purification of Oligonucleotides by AEX and IP RP



RP analysis of RNA markers using YMC Accura Triart Bio C4

TECHNICAL NOTES

HILIC analysis of oligonucleotides using different bioinert columns

How to influence oligonucleotide analysis by IP-RP

Techni	cal Note	<u> </u>
	choose the optimum stured or non-denatur	conditions for analysis ed siRNA duplexes
oligonucleolod denaluring cor and excession analysis of sit	ing PDAs (LPNA) usually occur as edulations. They can be analysed under con- ditions so that duples formation is assured ungle-colored are detected. Alternatively this can be conducted under destinance	conditions so that both sense and artisense shrads a monthmed. Analysis of sIPEA under devaluting and in devaluting conditions can be altimeted by too particular phase. high performance back down devaluation PECD, Several parameters influence sIPEA separation
	rependure - key factor for the desaluration o scients and acids - affect double-shand stat	
increases t	he sensitivity and sample recovery. note introduces all relevant aspects of devi	artisce coaling of cultures body and NII considerably
Increases I This bedreical sPDA duples Sale 1 Olgano	he sensitivity and sample recovery. note introduces all retexant aspects of dev largeting the firedy lucificate gene GL2 was a closely asperve	urbice coating of column body and bit considerably shoring and non-denaturing IP-MP HPLC. As a sample 1 and (lable 1), The URIA contack of 19 nucleiches.
Increases 1 This behrical sPDA dupter SPDA 2 SPDA 2	te sensitudy and sample recovery. note trobulues at remain aspects of dev angeling the treby tacterise gene CL3 was o chalde exponent CO3 AOS CO3 ANA ACU UCO ARTELY 41979CA UCC OCC UCA USA ACC U Y	urbice coaling of cases body and 50 considerably indeg and non-declaring P-MP HPCC. As a sample analyzation 5, The HPMA consider of 10 michaelabor. Series STRM and Series Street
Internations 1 This becknown UPDA duptes: APDA P APDA P A	te sensitivity and sample recovery. note introduces all interant aspects of den- largeing the firetly lutitiesse gene GL3 was i shaller sequence COU ACS CESS ARU ACU UCS ARIST (F	sense strand antisense strand
Internation 1 This bedread UPDA deplore Self 1 Olymmu Self 2 O	In exercisive and service measures, and introduces of measure append of the service and the service append of the service appendix of the service appendix of extension appendix of the service appendix of the service appendix of the service appendix a service appendix of the service appendix a service appendix of the service appendix a service appendix of the service appendix appendix of the service appendix of the service appendix of the service appendix appendix of the service appendix of the service appendix of the service appendix appendix of the service appendix of the service appendix of the service appendix of the service appendix of the service appendix of the service appendix appendix of the service appendix of the service appendix appendix of the service appendix of the service appendix appendix of the service appendix of the	while using of claums loop, and the constrainting limiting and con-densiting (PP PP INCA As a sample real part of the observation) of the limit limit. In the constraint of the limit limit limit limit limit and the same limit limit limit limit limit limit limit limit limit in the constraint limit limit limit limit limit limit limit limit limit limit limit lim
Internation 1 This bedread UPDA deplore Self 1 Olymmu Self 2 O	In a starticity of a simple reasonsy, the starticity of a starting specific data and specific data and specific data and specific data and and specific data and specific data and specific data and and specific data and specific data and specific data and and specific data and specific data and specific data and and specific data and specific data and specific data and and specific data and specific data and specific data and and specific data and specific data and specific data and and specific data and specific data and specific data and and specific data and specific data and specific data and and specific data and specific data and specific data and and specific data and specific data and specific data and and and specific data and specific data and specific data and and and specific data and specific data and specific data and and and specific data and and and and and and and and and and and and and and and and	• under auföriger och anderen sollte give att för en ensektendelige sollten give att som eksenstering Profet (PCC), Att a stangår effektiver att att att att att att att att att at
International Transmission of the sector of	In exactly paid sample receivery, and includes are stress agends of one support of the host functioner genes (23 areas host respective). COMARC 2016 COLOR 100 APR (24 areas host respective). B the optimism column function and the o	• under auföriger och anderen sollte give att för en ensektendelige sollten give att som eksenstering Profet (PCC), Att a stangår effektiver att att att att att att att att att at
International In	In a starticity of a single reactory, the starticity of a single reactory of the single reactory is and the single reactory is and the single reactory of the s	• under auföriger och anderen sollte give att för en ensektendelige sollten give att som eksenstering Profet (PKC), Fils a sampler eller sollte sollte sollte eller sollte sollte sollte sollte sollte sollte sollte sollte sollte sollte sollte sollte sollte predesense att sollte sollte sollte sollte sollte sollte sollte sollte predesense att sollte sollte sollte sollte sollte sollte sollte sollte sollte predesense att sollte sollte sollte sollte sollte sollte sollte sollte predesense att sollte sollte sollte sollte sollte sollte sollte sollte predesense att sollte sollte sollte sollte sollte sollte sollte sollte predesense att sollte sollte sollte sollte sollte sollte sollte sollte att sollte sollte sollte sollte sollte sollte sollte sollte sollte predesense att sollte sollte sollte sollte sollte sollte sollte sollte att sollte so
International In	In example pair damps exempt. In example, the here has a second of end subgrading the here has a second of end subgrading the here has a second of end COMANG COMMAN ANA ANA CAUCAL MAYING COMANG COMMAN ANA ANA CAUCAL MAYING COMANG COMMAN ANA ANA CAUCAL MAYING IN EXAMPLE ANA ANA ANA ANA ANA ANA ANA ANA ANA AN	• under auföriger och anderen sollte give att för en ensektendelige sollten give att som eksenstering Profet (PKC), Fils a sampler eller sollte sollte sollte eller sollte sollte sollte sollte sollte sollte sollte sollte sollte sollte sollte sollte sollte predesense att sollte sollte sollte sollte sollte sollte sollte sollte predesense att sollte sollte sollte sollte sollte sollte sollte sollte sollte predesense att sollte sollte sollte sollte sollte sollte sollte sollte predesense att sollte sollte sollte sollte sollte sollte sollte sollte predesense att sollte sollte sollte sollte sollte sollte sollte sollte predesense att sollte sollte sollte sollte sollte sollte sollte sollte att sollte sollte sollte sollte sollte sollte sollte sollte sollte predesense att sollte sollte sollte sollte sollte sollte sollte sollte att sollte so
International Transition of the second secon	In a starticity of a single reactory, the starticity of a single reactory of the single reactory is and the single reactory is and the single reactory of the s	And an allow of a control tody and the company of the control tody

How to choose the optimum conditions for analysis of denatured or non-denatured siRNA duplexes

YMC CO., LTD. www.ymc.co.jp

YMC Europe GmbH www.ymc.eu

YMC America, Inc. www.ymcamerica.com

YMC Switzerland LLC www.ymc-schweiz.ch

YMC India Pvt. Ltd. www.ymcindia.com

YMC Shanghai Rep. Office www.ymcchina.com

YMC Korea Co., Ltd. www.ymckorea.com

YMC Taiwan Co., Ltd. www.ymctaiwan.com

YMC Singapore Tradelinks Pte. Ltd. www.ymc.sg